home *** CD-ROM | disk | FTP | other *** search
/ Aminet 7 / Aminet 7 - August 1995.iso / Aminet / misc / math / gpamiga_1_38_3.lha / examples / tutnfout < prev   
Encoding:
Text File  |  1993-12-03  |  7.8 KB  |  215 lines

  1.             GP/PARI CALCULATOR Version 1.38.23
  2.                      (Sparcv8 version)
  3.  
  4. Copyright 1989,1993 by C. Batut, D. Bernardi, H. Cohen and M. Olivier
  5.  
  6. Type ? for help
  7.  
  8. \precision      = 28
  9. \serieslength   = 16
  10. \format         = g0.28
  11. \prompt         = ? 
  12. stacksize = 4000000, prime limit = 500000, buffersize = 30000
  13. ? ? t=x^4+24*x^2+585*x+1791;nf=initalg(t);A=nf[1]
  14. %1 = x^4 - x^3 - 21*x^2 + 17*x + 133
  15. ? \precision=18
  16.    precision = 18 significant digits
  17. ? gc=galoisconj(A)
  18. %2 = [x, 0, 0, -1/7*x^3 + 5/7*x^2 + 1/7*x - 7]
  19. ? \precision=28
  20.    precision = 28 significant digits
  21. ? aut=gc[4]
  22. %3 = -1/7*x^3 + 5/7*x^2 + 1/7*x - 7
  23. ? pd=primedec(nf,7)
  24. %4 = [[7, [15, 12, 8, 8]~, 1, 1, [5, 4, 6, 4]~], [7, [7, 8, 8, 7]~, 1, 1, [5, 4, 2, 0]~], [7, [12, 13, 8, 7]~, 1, 1, [7, 2, 4, 0]~], [7, [13, 12, 8, 8]~, 1, 1, [5, 1, 4, 4]~]]
  25. ? pr1=pd[1]
  26. %5 = [7, [15, 12, 8, 8]~, 1, 1, [5, 4, 6, 4]~]
  27. ? hp=idealmul(nf,idmat(4),pr1)
  28. %6 = 
  29. [7 4 5 4]
  30.  
  31. [0 1 0 0]
  32.  
  33. [0 0 1 0]
  34.  
  35. [0 0 0 1]
  36.  
  37. ? hp3=idealmul(nf,hp,idealmul(nf,hp,hp))
  38. %7 = 
  39. [343 256 320 172]
  40.  
  41. [0 1 0 0]
  42.  
  43. [0 0 1 0]
  44.  
  45. [0 0 0 1]
  46.  
  47. ? \\ or hp3=idealpow(nf,hp,3)
  48. ? for(j=1,4,print(idealval(nf,hp3,pd[j])))
  49. 3
  50. 0
  51. 0
  52. 0
  53. ? hpi3=[hp3,[0.,0.]];hr1=ideallllred(nf,hpi3,0)
  54. %8 = [[7, 0, 6, 0; 0, 7, 2, 0; 0, 0, 1, 0; 0, 0, 0, 7], [-4.542115783424510364590581431 - 4.894092298183431478504869242*i, -3.241524812796742855830829541 - 6.227984987190759939849232263*i]]
  55. ? hr=hr1;for(j=1,3,hr=ideallllred(nf,hr,[1,5]);print(hr))
  56. [[7, 0, 0, 3; 0, 7, 0, 1; 0, 0, 7, 5; 0, 0, 0, 1], [-10.55920626489982283311310063 - 3.969550542422284695068789483*i, -5.008074927542683607729721315 - 6.637335920436941617757515525*i]]
  57. [[13, 0, 0, 10; 0, 13, 0, 2; 0, 0, 13, 11; 0, 0, 0, 1], [-17.55370045383322168333975537 - 3.234391090803506441411369877*i, -6.416260543236761408872612244 - 7.814752974898665176450527892*i]]
  58. [[7, 0, 6, 0; 0, 7, 2, 0; 0, 0, 1, 0; 0, 0, 0, 7], [-25.04390903221215492540062213 - 2.207432109741074676918714757*i, -8.566810186297751680077560554 - 11.91890520832118510749679346*i]]
  59. ? arch=hr[2]-hr1[2];l1=arch[1];l2=arch[2];
  60. ? s=real(l1+l2)/4;v1=[l1,l2,conj(l1),conj(l2)]~/2-[s,s,s,s]~
  61. %10 = [-3.794126968821658934140827421 + 1.343330094221178400793077242*i, 3.794126968821658934140827421 - 2.845460110565212583823780601*i, -3.794126968821658934140827421 - 1.343330094221178400793077242*i, 3.794126968821658934140827421 + 2.845460110565212583823780601*i]~
  62. ? m1=nf[5][1];m=matrix(4,4,j,k,if(j<=2,m1[j,k],conj(m1[j-2,k])));
  63. ? v=exp(v1);au=gauss(m,v)
  64. %12 = [79.00000000000000000000000006 + 9.693522799760103225000000000 E-27*i, -24.00000000000000000000000002 + 1.137188718654215335000000000 E-27*i, -14.00000000000000000000000000 - 2.909896133467555046000000000 E-28*i, 15.00000000000000000000000001 +  0.E-27*i]~
  65. ? vu=round(real(au))
  66. %13 = [79, -24, -14, 15]~
  67. ? u=mod(nf[7]*vu,A)
  68. %14 = mod(15/7*x^3 - 68/7*x^2 - 78/7*x + 79, x^4 - x^3 - 21*x^2 + 17*x + 133)
  69. ? norm(u)
  70. %15 = 1
  71. ? f1=factor(subst(char(u,x),x,x^2))
  72. %16 = 
  73. [x^8 + 85*x^6 + 1974*x^4 - 20*x^2 + 1 1]
  74.  
  75. ? f1=factor(subst(char(-u,x),x,x^2))
  76. %17 = 
  77. [x^4 + 13*x^3 + 42*x^2 - 8*x + 1 1]
  78.  
  79. [x^4 - 13*x^3 + 42*x^2 + 8*x + 1 1]
  80.  
  81. ? v=sqrt(-v)
  82. %18 = [0.09334880794728281557422432615 - 0.1174246256960511585313775710*i, 6.593348807947282815574224325 + 0.9834500294804898052951007426*i, 0.09334880794728281557422432615 + 0.1174246256960511585313775710*i, 6.593348807947282815574224325 - 0.9834500294804898052951007426*i]~
  83. ? au=gauss(m,v)
  84. %19 = [-4.079490831526613599392561953 - 7.068193709477782249000000000 E-28*i, 0.9623261373956720055191059533 + 3.553714746609330177000000000 E-29*i, 1.007652680516380682499122747 + 9.093425419181585311000000000 E-29*i, -0.9733355227802970462076159319 - 8.593538112938404083000000000 E-29*i]~
  85. ? v[1]=-v[1];v[3]=-v[3];au=gauss(m,v)
  86. %20 = [-4.000000000000000000000000006 - 6.058451751247048377000000000 E-28*i, 1.000000000000000000000000002 - 8.884286869317293167000000000 E-29*i, 1.000000000000000000000000000 + 5.456055251881480216000000000 E-29*i, -1.000000000000000000000000001 - 4.296769056469202041000000000 E-29*i]~
  87. ? vu2=round(real(au))
  88. %21 = [-4, 1, 1, -1]~
  89. ? u2=mod(nf[7]*vu2,A)
  90. %22 = mod(-1/7*x^3 + 5/7*x^2 + 1/7*x - 4, x^4 - x^3 - 21*x^2 + 17*x + 133)
  91. ? q=polred2(f1[1,1])
  92. %23 = 
  93. [1 x - 1]
  94.  
  95. [1/7*x^3 + 2*x^2 + 7*x - 1/7 x^2 - x + 1]
  96.  
  97. [-x - 3 x^4 - x^3 - 21*x^2 + 17*x + 133]
  98.  
  99. [-4/7*x^3 - 7*x^2 - 21*x + 32/7 x^4 - 2*x^3 + 6*x^2 - 5*x + 133]
  100.  
  101. ? up2=modreverse(mod(q[3,1],f1[1,1]))
  102. %24 = mod(-x - 3, x^4 - x^3 - 21*x^2 + 17*x + 133)
  103. ? mod(subst(lift(up2),x,aut),A)
  104. %25 = mod(1/7*x^3 - 5/7*x^2 - 1/7*x + 4, x^4 - x^3 - 21*x^2 + 17*x + 133)
  105. ? r=f1[1,1]%(x^2+u);-coeff(r,0)/coeff(r,1)
  106. %26 = mod(1/7*x^3 - 5/7*x^2 - 1/7*x + 4, x^4 - x^3 - 21*x^2 + 17*x + 133)
  107. ? al=mod(x^2-9,A)
  108. %27 = mod(x^2 - 9, x^4 - x^3 - 21*x^2 + 17*x + 133)
  109. ? principalidele(nf,al)
  110. %28 = [[-9; 0; 1; 0], [4.071180332419999163417166456 - 2.351990513650678045072327170*i, -0.1793600343093725532064609704 + 1.836799691135712939544530673*i]~]
  111. ? for(j=1,4,print(j,": ",idealval(nf,al,pd[j])))
  112. 1: 1
  113. 2: 0
  114. 3: 0
  115. 4: 1
  116. ? norm(al)
  117. %29 = 49
  118. ? pd14=idealmul(nf,pd[1],pd[4])
  119. %30 = 
  120. [7 4 5 0]
  121.  
  122. [0 1 0 0]
  123.  
  124. [0 0 1 0]
  125.  
  126. [0 0 0 7]
  127.  
  128. ? idealmul(nf,al,idmat(4))
  129. %31 = 
  130. [7 4 5 0]
  131.  
  132. [0 1 0 0]
  133.  
  134. [0 0 1 0]
  135.  
  136. [0 0 0 7]
  137.  
  138. ? setrand(1);v=buchgenfu(A,0.2,0.2)[,1]
  139. %32 = [x^4 - x^3 - 21*x^2 + 17*x + 133, [0, 2], [18981, 7], [1, x, x^2, 1/7*x^3 + 2/7*x^2 + 6/7*x], [4, [4], [[7, 0, 0, 3; 0, 7, 0, 2; 0, 0, 7, 1; 0, 0, 0, 1]]], 3.794126968821658934140827422, 0.8826018286655581294913627961, [6, 1/7*x^3 - 5/7*x^2 - 8/7*x + 8], [1/7*x^3 - 5/7*x^2 - 1/7*x + 4], 150]
  140. ? uf=mod(v[9][1],A)
  141. %33 = mod(1/7*x^3 - 5/7*x^2 - 1/7*x + 4, x^4 - x^3 - 21*x^2 + 17*x + 133)
  142. ? uu=mod(v[8][2],A)
  143. %34 = mod(1/7*x^3 - 5/7*x^2 - 8/7*x + 8, x^4 - x^3 - 21*x^2 + 17*x + 133)
  144. ? cu2=log(conjvec(u2));cuf=log(conjvec(uf));cuu=log(conjvec(uu));
  145. ? lindep(real([cu2[1],cuf[1],cuu[1]]))
  146. %36 = [0, 0, 1]
  147. ? lindep([cu2[1],cuf[1],cuu[1],2*i*pi])
  148. %37 = [1, -1, -3, 0]
  149. ? u2/uf
  150. %38 = mod(-1, x^4 - x^3 - 21*x^2 + 17*x + 133)
  151. ? ru=nf[8]*vvector(4,j,coeff(v[8][2],j-1))
  152. %39 = [8, -2, -1, 1]~
  153. ? nf[7]*ru
  154. %40 = 1/7*x^3 - 5/7*x^2 - 8/7*x + 8
  155. ? setrand(1);bnf=buchinitfu(A,0.2,0.2);
  156. ? bnf[8]
  157. %42 = [[4, [4], [[7, 0, 0, 3; 0, 7, 0, 2; 0, 0, 7, 1; 0, 0, 0, 1]]], 3.794126968821658934140827422, 0.8826018286655581294913627961, [6, 1/7*x^3 - 5/7*x^2 - 8/7*x + 8], [1/7*x^3 - 5/7*x^2 - 1/7*x + 4], 150]
  158. ? nf=bnf[7];
  159. ? hp4=idealpow(nf,hp,4)
  160. %44 = 
  161. [2401 942 1006 1544]
  162.  
  163. [0 1 0 0]
  164.  
  165. [0 0 1 0]
  166.  
  167. [0 0 0 1]
  168.  
  169. ? vis=isprincipal(bnf,hp4)
  170. %45 = [[0]~, [88, -31, -13, 15]~, 143]
  171. ? alpha=mod(nf[7]*vis[2],A)
  172. %46 = mod(15/7*x^3 - 61/7*x^2 - 127/7*x + 88, x^4 - x^3 - 21*x^2 + 17*x + 133)
  173. ? norm(alpha)
  174. %47 = 2401
  175. ? idealmul(nf,idmat(4),mat(vis[2]))
  176. %48 = 
  177. [2401 942 1006 1544]
  178.  
  179. [0 1 0 0]
  180.  
  181. [0 0 1 0]
  182.  
  183. [0 0 0 1]
  184.  
  185. ? vit=isprincipal(bnf,hp)
  186. %49 = [[1]~, [43/7, -15/7, -6/7, 1]~, 139]
  187. ? pp=isprincipal(bnf,pd14)
  188. %50 = [[0]~, [-40, 14, 6, -7]~, 143]
  189. ? al2=mod(nf[7]*pp[2],A)
  190. %51 = mod(-x^3 + 4*x^2 + 8*x - 40, x^4 - x^3 - 21*x^2 + 17*x + 133)
  191. ? u3=al2/al
  192. %52 = mod(-1/7*x^3 + 5/7*x^2 + 1/7*x - 4, x^4 - x^3 - 21*x^2 + 17*x + 133)
  193. ? char(u3,x)
  194. %53 = x^4 - 13*x^3 + 42*x^2 + 8*x + 1
  195. ? me=concat(bnf[3],[2,2]~)
  196. %54 = 
  197. [-3.794126968821658934140827422 + 10.76810805499055811618100739*i 2]
  198.  
  199. [3.794126968821658934140827422 + 6.579317850204167131564149548*i 2]
  200.  
  201. ? cu3=principalidele(nf,u3)[2]
  202. %55 = [-3.794126968821658934140827422 + 4.484922747810971639255720625*i, 3.794126968821658934140827422 + 0.2961325430245806546388627815*i]~
  203. ? xc=gauss(real(me),real(cu3))
  204. %56 = [1.000000000000000000000000000,  0.E-48]~
  205. ? xd=cu3-me*xc
  206. %57 = [ 0.E-47 - 6.283185307179586476925286766*i,  0.E-47 - 6.283185307179586476925286766*i]~
  207. ? xu=principalidele(nf,uu)[2]
  208. %58 = [7.646841173435770929738625909 E-57 + 2.094395102393195492308428922*i, -9.558551466794713662173282386 E-58 - 2.094395102393195492308428922*i]~
  209. ? xd[1]/xu[1]
  210. %59 = -3.000000000000000000000000000 +  0.E-47*i
  211. ? isunit(bnf,u3)
  212. %60 = [1, mod(3, 6)]
  213. ? uu^3*uf
  214. %61 = mod(-1/7*x^3 + 5/7*x^2 + 1/7*x - 4, x^4 - x^3 - 21*x^2 + 17*x + 133)